Fe55 CTE Update

Daniel Yates 6/28/16

Goals

- Looking at Fe55 data from e2v-113 detector
- Hoping to characterize CTE/CTI for each section of detector
- Analyzing how flux changes across section
- Examine footprint-finding parameters for optimization
- Model found footprints as function of growth parameter

Charge Transfer Efficiency/Inefficiency (CTE/CTI)

- CTE is measure of how efficiently the device transfers charge packets between pixels
- CTI is measurement of how inefficiently any single transfer is, defined by CTI = 1-CTE
- CTI is obtained by examining change in flux across sections of detector

Fe55

- Iron-55 decays to manganese-55 via electron capture
 - Subsequently gives off 1 of 2 different energy x-rays during capture
 - Kα (5.9keV) x-rays are much more likely than Kβ (6.5keV) x-rays
- X-rays carry enough energy to inject e- into CCD via photoelectric effect
 - Known to deposit ~1600 e- into CCD, with about
 70% within a pixel suffering hit directly in center

Footprint Finder

- Searches for minimum number of adjacent pixels above given threshold
- Once all pixels above threshold found, extends region by growth factor in each direction

Flux analysis

- Examining how flux changes across each detector
 - Divide each section into 11 bins
 - Determine flux in each bin of section
 - Plot flux vs bin to determine how it changes
- Looking for flux to decrease as bins get farther from serial amp
- Change in flux directly relates to inefficiency of charge transfers

Section Binning

- Each section contains 11 bins of 182 pixels/ bin
- Bin number increases farther away from serial amp

Determining Flux

- Fit gaussian to $K\alpha$ peak to determine mean flux in each bin
 - Originally fit double gaussian to both peaks, low statistics in Kβ peak made single fit workable
- Mean flux for each Kα peak in each bin used to determine change in flux across section

Flux across sections 1-4

CTI vs Detector Section

- Most exhibit CTI close to, but greater than, zero (preferred)
- Corresponding CTE values deviate in 4th or 5th decimal place
 - Most CCDs have CTE values deviate 6th or 7th decimal place

	i		
Section	СТЕ	Section	СТЕ
1	0.9994	9	1.0003
2	1.0002	10	0.9998
3	0.9999	11	0.9999
4	1.0007	12	0.9998
5	1.0000	13	0.9999
6	0.9995	14	1.0000
7	0.9997	15	0.9992
8	0.9998	16	0.9994

Footprint Finder Parameters

- Method used to find footprints depends on four parameters
 - Threshold
 - Minimum pixel size
 - Growth factor
 - Isotropy
- Want to adjust those parameters to determine optimal settings for footprint finding in the detector
 - Sweep across threshold with different growth factors and minimum pixel sizes

Number of Footprints vs Threshold (224414)

- Examining how grow parameter influences number of footprints
- Increasing grow decreases found footprints

Number of Footprints vs Threshold (224414)

- Examining how minimum pixel parameter influences number of footprints
- Increasing minimum pixels decreases found footprints

Number of Footprints vs Threshold (222137)

- Same decrease in identified footprints as the grow factor increases
- Using 1 pixel minimum creates greater region of threshold independence

Number of Footprints vs Threshold

 Same relationship between grow factor and found footprints for the 3 exposure times present in data

Modeling Footprint Falloff

 Currently attempting to model number of footprints as function of grow factor

$$N_{grow} = \left(1 - \frac{k(k-1)}{2} \frac{(2g+1)^4}{\left(\frac{N_{pix}}{5}\right)^2}\right) * k$$

- Where
 - k = number of footprints with g=0
 - g = growth factor

Number Footprints vs Threshold 40000 35000 30000 25000 ♦ grow=0 호 20000 □grow=4 15000 + model grow=0 10000 + model grow=4 5000 0 50 100 150 200 Threshold (x stdevclip)

- Model fits very well to g=0 case (as expected)
- For g=4 case, model is multiplied by a (seemingly arbitrary) constant, β
 - β is different for g=2 case, and for different exposure rates

$$N_{grow} = \left(1 - \beta \left[\frac{k(k-1)}{2} \frac{(2g+1)^4}{\left(\frac{N_{pix}}{5}\right)^2}\right]\right) * k$$

16

Conclusion

- CTI analysis by dividing sections into bins shows that CTI is close to 0
 - Needs better statistics to ensure accuracy
- Minimum of 1, rather than 2, pixels gives large area of threshold independence
- Modeling footprints falloff with increased growth factor requires more work